Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Int J Biol Sci ; 20(7): 2339-2355, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725853

RESUMO

Chronic cholestatic damage is associated to both accumulation of cytotoxic levels of bile acids and expansion of adult hepatic progenitor cells (HPC) as part of the ductular reaction contributing to the regenerative response. Here, we report a bile acid-specific cytotoxic response in mouse HPC, which is partially impaired by EGF signaling. Additionally, we show that EGF synergizes with bile acids to trigger inflammatory signaling and NLRP3 inflammasome activation in HPC. Aiming at understanding the impact of this HPC specific response on the liver microenvironment we run a proteomic analysis of HPC secretome. Data show an enrichment in immune and TGF-ß regulators, ECM components and remodeling proteins in HPC secretome. Consistently, HPC-derived conditioned medium promotes hepatic stellate cell (HSC) activation and macrophage M1-like polarization. Strikingly, EGF and bile acids co-treatment leads to profound changes in the secretome composition, illustrated by an abolishment of HSC activating effect and by promoting macrophage M2-like polarization. Collectively, we provide new specific mechanisms behind HPC regulatory action during cholestatic liver injury, with an active role in cellular interactome and inflammatory response regulation. Moreover, findings prove a key contribution for EGFR signaling jointly with bile acids in HPC-mediated actions.


Assuntos
Ácidos e Sais Biliares , Receptores ErbB , Inflamação , Camundongos Endogâmicos C57BL , Transdução de Sinais , Animais , Ácidos e Sais Biliares/metabolismo , Receptores ErbB/metabolismo , Camundongos , Inflamação/metabolismo , Células-Tronco/metabolismo , Fígado/metabolismo , Fígado/patologia , Masculino , Proteômica , Macrófagos/metabolismo , Células Estreladas do Fígado/metabolismo
3.
J Exp Clin Cancer Res ; 42(1): 197, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37550785

RESUMO

BACKGROUND: Autotaxin (ATX) is a secreted enzyme that converts lysophosphatidylcholine to lysophosphatidic acid (LPA). LPA stimulates cell proliferation and migration and promotes wound repair following tissue damage. ATX levels are directly correlated with stage and grade in several human cancers. Several small molecule ATX inhibitors have been developed in recent years. IOA-289 is a potent ATX inhibitor, developed to treat cancers containing fibrosis. In this study, we tested IOA-289 treatment on different gastrointestinal tract tumor cell lines, in order to evaluate its effects on viability and motility. METHODS: To determine the effects on cell viability and proliferation of treatment with increasing concentrations of IOA-289, we used the crystal violet assay, a clonogenic assay in matrigel, and we evaluated the inhibitor's effect on formation of 3D spheroids in an in vitro model. The effect of IOA-289 on cell cycle phases was analysed with a redox dye reagent. Cell migration capacity was evaluated by wound healing assay and transwell migration assay. To evaluate the pro-apoptotic effect of the inhibitor, cells were stained with Annexin V and immunofluorescence and flow cytometry analysis were performed. An antibody array was also used, to discriminate, in various samples, the differential expression of 43 proteins involved in the apoptosis pathway. RESULTS: We found that IOA-289 is able to inhibit both growth and migration of gastrointestinal tract tumor cell lines, both in 2D (crystal violet assay) and 3D in vitro models (spheroid formation and clonogenic assay in matrigel). This effect is dose-dependent, and the drug is most effective when administered in FBS-free culture medium. The inhibitory effect on cell growth is due to a pro-apoptotic effect of IOA-289. Staining with FITC-conjugated Annexin V showed that IOA-289 induced a dose-dependent increase in fluorescence following incubation for 24 h, and apoptotic cells were also distinguished in flow cytometry using Annexin/PI staining. The antibody array shows that treatment with IOA-289 causes the increased expression of several pro-apoptotic proteins in all tested cell lines. CONCLUSIONS: These results indicate that IOA-289 may be an effective drug for the treatment of tumors of the gastrointestinal tract, particularly those characterized by a high degree of fibrosis.


Assuntos
Neoplasias Gastrointestinais , Inibidores de Fosfodiesterase , Humanos , Anexina A5 , Linhagem Celular Tumoral , Fibrose , Neoplasias Gastrointestinais/tratamento farmacológico , Diester Fosfórico Hidrolases , Inibidores de Fosfodiesterase/farmacologia , Avaliação Pré-Clínica de Medicamentos
4.
Redox Biol ; 65: 102818, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37463530

RESUMO

The NADPH oxidase NOX4 has been proposed as necessary for the apoptosis induced by the Transforming Growth Factor-beta (TGF-ß) in hepatocytes and hepatocellular carcinoma (HCC) cells. However, whether NOX4 is required for TGF-ß-induced canonical (SMADs) or non-canonical signals is not fully understood yet, neither its potential involvement in other parallel actions induced by TGF-ß. In this work we have used CRISPR Cas9 technology to stable attenuate NOX4 expression in HCC cells. Results have indicated that NOX4 is required for an efficient SMAD2/3 phosphorylation in response to TGF-ß, whereas non-canonical signals, such as the phosphorylation of the Epidermal Growth Receptor or AKT, are higher in NOX4 silenced cells. TGF-ß-mediated inhibition of cell proliferation and viability is attenuated in NOX4 silenced cells, correlating with decreased response in terms of apoptosis, and maintenance of high expression of MYC and CYCLIN D1. These results would indicate that NOX4 is required for all the tumor suppressor actions of TGF-ß in HCC. However, analysis in human HCC tumors has revealed a worse prognosis for patients showing high expression of TGF-ß1-related genes concomitant with high expression of NOX4. Deepening into other tumorigenic actions of TGF-ß that may contribute to tumor progression, we found that NOX4 is also required for TGF-ß-induced migratory effects. The Epithelial-Mesenchymal transition (EMT) program does not appear to be affected by attenuation of NOX4 levels. However, TGF-ß-mediated regulation of cytoskeleton dynamics and focal adhesions require NOX4, which is necessary for TGF-ß-induced increase in the chaperone Hsp27 and correct subcellular localization of Hic-5 within focal adhesions, as well for upregulation of the metalloprotease MMP9. All these results together point to NOX4 as a key element in the whole TGF-ß signaling in HCC cells, revealing an unknown role for NOX4 as tumor promoter in HCC patients presenting activation of the TGF-ß pathway.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Fator de Crescimento Transformador beta , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , NADPH Oxidase 4/genética , NADPH Oxidase 4/metabolismo , Fator de Crescimento Transformador beta1
5.
Hepatology ; 78(2): 416-433, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35920301

RESUMO

BACKGROUND AND AIMS: The NADPH oxidase NOX4 plays a tumor-suppressor function in HCC. Silencing NOX4 confers higher proliferative and migratory capacity to HCC cells and increases their in vivo tumorigenic potential in xenografts in mice. NOX4 gene deletions are frequent in HCC, correlating with higher tumor grade and worse recurrence-free and overall survival rates. However, despite the accumulating evidence of a protective regulatory role in HCC, the cellular processes governed by NOX4 are not yet understood. Accordingly, the aim of this work was to better understand the molecular mechanisms regulated by NOX4 in HCC in order to explain its tumor-suppressor action. APPROACH AND RESULTS: Experimental models: cell-based loss or gain of NOX4 function experiments, in vivo hepatocarcinogenesis induced by diethylnitrosamine in Nox4 -deficient mice, and analyses in human HCC samples. Methods include cellular and molecular biology analyses, proteomics, transcriptomics, and metabolomics, as well as histological and immunohistochemical analyses in tissues. Results identified MYC as being negatively regulated by NOX4. MYC mediated mitochondrial dynamics and a transcriptional program leading to increased oxidative metabolism, enhanced use of both glucose and fatty acids, and an overall higher energetic capacity and ATP level. NOX4 deletion induced a redox imbalance that augmented nuclear factor erythroid 2-related factor 2 (Nrf2) activity and was responsible for MYC up-regulation. CONCLUSIONS: Loss of NOX4 in HCC tumor cells induces metabolic reprogramming in a Nrf2/MYC-dependent manner to promote HCC progression.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Camundongos , Animais , NADPH Oxidases/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , NADPH Oxidase 4/genética , NADPH Oxidase 4/metabolismo , Oxirredução , Homeostase , Espécies Reativas de Oxigênio/metabolismo
6.
J Pathol ; 258(3): 312-324, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36148647

RESUMO

Despite the well-known hepatoprotective role of the epidermal growth factor receptor (EGFR) pathway upon acute damage, its specific actions during chronic liver disease, particularly cholestatic injury, remain ambiguous and unresolved. Here, we analyzed the consequences of inactivating EGFR signaling in the liver on the regenerative response following cholestatic injury. For that, transgenic mice overexpressing a dominant negative mutant human EGFR lacking tyrosine kinase activity (ΔEGFR) in albumin-positive cells were submitted to liver damage induced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC), an experimental model resembling human primary sclerosing cholangitis. Our results show an early activation of EGFR after 1-2 days of a DDC-supplemented diet, followed by a signaling switch-off. Furthermore, ΔEGFR mice showed less liver damage and a more efficient regeneration following DDC injury. Analysis of the mechanisms driving this effect revealed an enhanced activation of mitogenic/survival signals, AKT and ERK1/2-MAPKs, and changes in cell turnover consistent with a quicker resolution of damage in response to DDC. These changes were concomitant with profound differences in the profile of intrahepatic immune cells, consisting of a shift in the M1/M2 balance towards M2 polarity, and the Cd4/Cd8 ratio in favor of Cd4 lymphocytes, overall supporting an immune cell switch into a pro-restorative phenotype. Interestingly, ΔEGFR livers also displayed an amplified ductular reaction, with increased expression of EPCAM and an increased number of CK19-positive ductular structures in portal areas, demonstrating an overexpansion of ductular progenitor cells. In summary, our work supports the notion that hepatocyte-specific EGFR activity acts as a key player in the crosstalk between parenchymal and non-parenchymal hepatic cells, promoting the pro-inflammatory response activated during cholestatic injury and therefore contributing to the pathogenesis of cholestatic liver disease. © 2022 The Pathological Society of Great Britain and Ireland.


Assuntos
Hepatopatias , Regeneração Hepática , Albuminas/metabolismo , Albuminas/farmacologia , Animais , Descarboxilases de Aminoácido-L-Aromático/metabolismo , Descarboxilases de Aminoácido-L-Aromático/farmacologia , Molécula de Adesão da Célula Epitelial/metabolismo , Molécula de Adesão da Célula Epitelial/farmacologia , Receptores ErbB/metabolismo , Hepatócitos/patologia , Humanos , Fígado/patologia , Hepatopatias/patologia , Regeneração Hepática/fisiologia , Camundongos , Camundongos Transgênicos , Proteínas Tirosina Quinases , Proteínas Proto-Oncogênicas c-akt/metabolismo
7.
Cancers (Basel) ; 14(8)2022 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-35454809

RESUMO

Proteoglycans are a class of highly glycosylated proteins expressed in virtually all tissues, which are localized within membranes, but more often in the pericellular space and extracellular matrix (ECM), and are involved in tissue homeostasis and remodeling of the stromal microenvironment during physiological and pathological processes, such as tissue regeneration, angiogenesis, and cancer. In general, proteoglycans can perform signaling activities and influence a range of physical, chemical, and biological tissue properties, including the diffusivity of small electrolytes and nutrients and the bioavailability of growth factors. While the dysregulated expression of some proteoglycans is observed in many cancers, whether they act as supporters or limiters of neoplastic progression is still a matter of controversy, as the tumor promoting or suppressive function of some proteoglycans is context dependent. The participation of multiple proteoglycans in organ regeneration (as demonstrated for the liver in hepatectomy mouse models) and in cancer suggests that these molecules actively influence cell growth and motility, thus contributing to key events that characterize neoplastic progression. In this review, we outline the main roles of proteoglycans in the physiology and pathology of cancers, with a special mention to hepatocellular carcinoma (HCC), highlighting the translational potential of proteoglycans as targets or therapeutic agents for the treatment of this disease.

8.
Int J Mol Sci ; 23(8)2022 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-35457006

RESUMO

Intrahepatic cholangiocarcinoma (iCCA) is a highly aggressive cancer with limited therapeutic options and short overall survival. iCCA is characterized by a strong desmoplastic reaction in the surrounding ecosystem that likely affects tumoral progression. Overexpression of the Notch pathway is implicated in iCCA development and progression. Our aim was to investigate the effectiveness of Crenigacestat, a selective inhibitor of NOTCH1 signaling, against the cross-talk between cancer cells and the surrounding ecosystem in an in vivo HuCCT1-xenograft model. In the present study, a transcriptomic analysis approach, validated by Western blotting and qRT-PCR on iCCA tumor masses treated with Crenigacestat, was used to study the molecular pathways responsive to drug treatment. Our results indicate that Crenigacestat significantly inhibited NOTCH1 and HES1, whereas tumor progression was not affected. In addition, the drug triggered a strong immune response and blocked neovascularization in the tumor ecosystem of the HuCCT1-xenograft model without affecting the occurrence of fibrotic reactions. Therefore, although these data need further investigation, our observations confirm that Crenigacestat selectively targets NOTCH1 and that the desmoplastic response in iCCA likely plays a key role in both drug effectiveness and tumor progression.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Neoplasias dos Ductos Biliares/metabolismo , Ductos Biliares Intra-Hepáticos/metabolismo , Colangiocarcinoma/metabolismo , Ecossistema , Humanos , Microambiente Tumoral
9.
Int J Mol Sci ; 22(21)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34769191

RESUMO

The balance between anti-tumor and tumor-promoting immune cells, such as CD4+ Th1 and regulatory T cells (Tregs), respectively, is assumed to dictate the progression of hepatocellular carcinoma (HCC). The transforming growth factor beta (TGFß) markedly shapes the HCC microenvironment, regulating the activation state of multiple leukocyte subsets and driving the differentiation of cancer associated fibroblasts (CAFs). The fibrotic (desmoplastic) reaction in HCC tissue strongly depends on CAFs activity. In this study, we attempted to assess the role of TGFß on transendothelial migration of Th1-oriented and Treg-oriented CD4+ T cells via a direct or indirect, CAF-mediated mechanisms, respectively. We found that the blockage of TGFß receptor I-dependent signaling in Tregs resulted in impaired transendothelial migration (TEM) of these cells. Interestingly, the secretome of TGFß-treated CAFs inhibited the TEM of Tregs but not Th1 cells, in comparison to the secretome of untreated CAFs. In addition, we found a significant inverse correlation between alpha-SMA and FoxP3 (marker of Tregs) mRNA expression in a microarray analysis involving 78 HCCs, thus suggesting that TGFß-activated stromal cells may counteract the trafficking of Tregs into the tumor. The apparent dual behavior of TGFß as both pro- and anti-tumorigenic cytokines may add a further level of complexity to the mechanisms that regulate the interactions among cancerous, stromal, and immune cells within HCC, as well as other solid tumors, and contribute to better manipulation of the TGFß signaling as a therapeutic target in HCC patients.


Assuntos
Carcinoma Hepatocelular/imunologia , Neoplasias Hepáticas/imunologia , Linfócitos T Reguladores/imunologia , Fator de Crescimento Transformador beta1/imunologia , Microambiente Tumoral , Fibroblastos Associados a Câncer/imunologia , Fibroblastos Associados a Câncer/patologia , Carcinoma Hepatocelular/patologia , Células Cultivadas , Células Endoteliais da Veia Umbilical Humana , Humanos , Neoplasias Hepáticas/patologia , Linfócitos T Reguladores/patologia , Migração Transendotelial e Transepitelial
10.
Cells ; 10(9)2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34571961

RESUMO

The Transforming Growth Factor-beta (TGF-ß) pathway plays essential roles in liver development and homeostasis and become a relevant factor involved in different liver pathologies, particularly fibrosis and cancer. The family of NADPH oxidases (NOXs) has emerged in recent years as targets of the TGF-ß pathway mediating many of its effects on hepatocytes, stellate cells and macrophages. This review focuses on how the axis TGF-ß/NOXs may regulate the biology of different liver cells and how this influences physiological situations, such as liver regeneration, and pathological circumstances, such as liver fibrosis and cancer. Finally, we discuss whether NOX inhibitors may be considered as potential therapeutic tools in liver diseases.


Assuntos
Fígado/metabolismo , NADPH Oxidases/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Humanos , Cirrose Hepática/metabolismo , Regeneração Hepática/fisiologia , Neoplasias/metabolismo , Transdução de Sinais/fisiologia
11.
Cancers (Basel) ; 13(13)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209646

RESUMO

Transforming Growth Factor-beta (TGF-ß) superfamily members are essential for tissue homeostasis and consequently, dysregulation of their signaling pathways contributes to the development of human diseases. In the liver, TGF-ß signaling participates in all the stages of disease progression from initial liver injury to hepatocellular carcinoma (HCC). During liver carcinogenesis, TGF-ß plays a dual role on the malignant cell, behaving as a suppressor factor at early stages, but contributing to later tumor progression once cells escape from its cytostatic effects. Moreover, TGF-ß can modulate the response of the cells forming the tumor microenvironment that may also contribute to HCC progression, and drive immune evasion of cancer cells. Thus, targeting the TGF-ß pathway may constitute an effective therapeutic option for HCC treatment. However, it is crucial to identify biomarkers that allow to predict the response of the tumors and appropriately select the patients that could benefit from TGF-ß inhibitory therapies. Here we review the functions of TGF-ß on HCC malignant and tumor microenvironment cells, and the current strategies targeting TGF-ß signaling for cancer therapy. We also summarize the clinical impact of TGF-ß inhibitors in HCC patients and provide a perspective on its future use alone or in combinatorial strategies for HCC treatment.

12.
Arterioscler Thromb Vasc Biol ; 41(9): e440-e452, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34162229

RESUMO

Objective: We investigated the effect of a potent TGFß (transforming growth factor ß) inhibitor peptide (P144) from the betaglycan/TGFß receptor III on aortic aneurysm development in a Marfan syndrome mouse model. Approach and Results: We used a chimeric gene encoding the P144 peptide linked to apolipoprotein A-I via a flexible linker expressed by a hepatotropic adeno-associated vector. Two experimental approaches were performed: (1) a preventive treatment where the vector was injected before the onset of the aortic aneurysm (aged 4 weeks) and followed-up for 4 and 20 weeks and (2) a palliative treatment where the vector was injected once the aneurysm was formed (8 weeks old) and followed-up for 16 weeks. We evaluated the aortic root diameter by echocardiography, the aortic wall architecture and TGFß signaling downstream effector expression of pSMAD2 and pERK1/2 by immunohistomorphometry, and Tgfß1 and Tgfß2 mRNA expression levels by real-time polymerase chain reaction. Marfan syndrome mice subjected to the preventive approach showed no aortic dilation in contrast to untreated Marfan syndrome mice, which at the same end point age already presented the aneurysm. In contrast, the palliative treatment with P144 did not halt aneurysm progression. In all cases, P144 improved elastic fiber morphology and normalized pERK1/2-mediated TGFß signaling. Unlike the palliative treatment, the preventive treatment reduced Tgfß1 and Tgfß2 mRNA levels. Conclusions: P144 prevents the onset of aortic aneurysm but not its progression. Results indicate the importance of reducing the excess of active TGFß signaling during the early stages of aortic disease progression.


Assuntos
Aorta/metabolismo , Aneurisma Aórtico/prevenção & controle , Técnicas de Transferência de Genes , Terapia Genética , Síndrome de Marfan/complicações , Fragmentos de Peptídeos/metabolismo , Proteoglicanas/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Aorta/patologia , Aneurisma Aórtico/genética , Aneurisma Aórtico/metabolismo , Aneurisma Aórtico/patologia , Dependovirus/genética , Dilatação Patológica , Modelos Animais de Doenças , Feminino , Fibrilina-1/genética , Vetores Genéticos , Masculino , Síndrome de Marfan/genética , Camundongos Endogâmicos C57BL , Fragmentos de Peptídeos/genética , Proteoglicanas/genética , Receptores de Fatores de Crescimento Transformadores beta/genética , Transdução de Sinais , Fator de Crescimento Transformador beta/genética
13.
Int J Mol Sci ; 22(11)2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34073989

RESUMO

(1) Background: The transforming growth factor (TGF)-ß plays a dual role in liver carcinogenesis. At early stages, it inhibits cell growth and induces apoptosis. However, TGF-ß expression is high in advanced stages of hepatocellular carcinoma (HCC) and cells become resistant to TGF-ß induced suppressor effects, responding to this cytokine undergoing epithelial-mesenchymal transition (EMT), which contributes to cell migration and invasion. Metabolic reprogramming has been established as a key hallmark of cancer. However, to consider metabolism as a therapeutic target in HCC, it is necessary to obtain a better understanding of how reprogramming occurs, which are the factors that regulate it, and how to identify the situation in a patient. Accordingly, in this work we aimed to analyze whether a process of full EMT induced by TGF-ß in HCC cells induces metabolic reprogramming. (2) Methods: In vitro analysis in HCC cell lines, metabolomics and transcriptomics. (3) Results: Our findings indicate a differential metabolic switch in response to TGF-ß when the HCC cells undergo a full EMT, which would favor lipolysis, increased transport and utilization of free fatty acids (FFA), decreased aerobic glycolysis and an increase in mitochondrial oxidative metabolism. (4) Conclusions: EMT induced by TGF-ß in HCC cells reprograms lipid metabolism to facilitate the utilization of FFA and the entry of acetyl-CoA into the TCA cycle, to sustain the elevated requirements of energy linked to this process.


Assuntos
Carcinoma Hepatocelular/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Neoplasias Hepáticas/metabolismo , Metaboloma/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Fator de Crescimento Transformador beta/farmacologia , Movimento Celular/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Inativação Gênica , Células Hep G2 , Humanos , Metaboloma/genética , Metabolômica , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Receptores de Fatores de Crescimento Transformadores beta/genética , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transcriptoma/genética
14.
Cancers (Basel) ; 13(11)2021 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-34070953

RESUMO

Hepatocellular carcinoma (HCC) generally presents a low avidity for 2-deoxy-2-[18F]fluoro-d-glucose (FDG) in PET/CT although an increased FDG uptake seems to relate to more aggressive biological factors. To define the prognostic value of PET/CT with FDG in patients with an HCC scheduled for a tumor resection, forty-one patients were prospectively studied. The histological factors of a poor prognosis were determined and FDG uptake in the HCC lesions was analyzed semi-quantitatively (lean body mass-corrected standardized uptake value (SUL) and tumor-to-liver ratio (TLR) at different time points). The PET metabolic parameters were related to the histological characteristics of the resected tumors and to the evolution of patients. Microvascular invasion (MVI) and a poor grade of differentiation were significantly related to a worse prognosis. The SULpeak of the lesion 60 min post-FDG injection was the best parameter to predict MVI while the SULpeak of the TLR at 60 min was better for a poor differentiation. Moreover, the latter parameter was also the best preoperative variable available to predict any of these two histological factors. Patients with an increased TLRpeak60 presented a significantly higher incidence of poor prognostic factors than the rest (75% vs. 28.6%, p = 0.005) and a significantly higher incidence of recurrence at 12 months (38% vs. 0%, p = 0.014). Therefore, a semi-quantitative analysis of certain metabolic parameters on PET/CT can help identify, preoperatively, patients with histological factors of a poor prognosis, allowing an adjustment of the therapeutic strategy for those patients with a higher risk of an early recurrence.

15.
Cell Death Dis ; 12(6): 555, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-34050139

RESUMO

Dysregulation of miRNAs is a hallmark of cancer, modulating oncogenes, tumor suppressors, and drug responsiveness. The multi-kinase inhibitor sorafenib is one of the first-line drugs for advanced hepatocellular carcinoma (HCC), although the outcome for treated patients is heterogeneous. The identification of predictive biomarkers and targets of sorafenib efficacy are sorely needed. Thus, selected top upregulated miRNAs from the C19MC cluster were analyzed in different hepatoma cell lines compared to immortalized liver human cells, THLE-2 as control. MiR-518d-5p showed the most consistent upregulation among them. Thus, miR-518d-5p was measured in liver tumor/non-tumor samples of two distinct cohorts of HCC patients (n = 16 and n = 20, respectively). Circulating miR-518d-5p was measured in an independent cohort of HCC patients receiving sorafenib treatment (n = 100), where miR-518d-5p was analyzed in relation to treatment duration and patient's overall survival. In vitro and in vivo studies were performed in human hepatoma BCLC3 and Huh7 cells to analyze the effect of miR-518d-5p inhibition/overexpression during the response to sorafenib. Compared with healthy individuals, miR-518d-5p levels were higher in hepatic and serum samples from HCC patients (n = 16) and in an additional cohort of tumor/non-tumor paired samples (n = 20). MiR-518d-5p, through the inhibition of c-Jun and its mitochondrial target PUMA, desensitized human hepatoma cells and mouse xenograft to sorafenib-induced apoptosis. Finally, serum miR-518d-5p was assessed in 100 patients with HCC of different etiologies and BCLC-stage treated with sorafenib. In BCLC-C patients, higher serum miR-518d-5p at diagnosis was associated with shorter sorafenib treatment duration and survival. Hence, hepatic miR-518d-5p modulates sorafenib resistance in HCC through inhibition of c-Jun/PUMA-induced apoptosis. Circulating miR-518d-5p emerges as a potential lack of response biomarker to sorafenib in BCLC-C HCC patients.


Assuntos
Neoplasias Hepáticas/genética , MicroRNAs/antagonistas & inibidores , Mitocôndrias/metabolismo , Animais , Apoptose , Morte Celular , Feminino , Humanos , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Nus
16.
Pharmaceutics ; 12(5)2020 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-32370293

RESUMO

: Transforming growth factor-beta (TGFß1) is considered as a master regulator for many intracellular signaling pathways, including proliferation, differentiation and death, both in health and disease. It further represents an oncogenic factor in advanced tumors allowing cancer cells to be more invasive and prone to move into the metastatic process. This finding has received great attention for discovering new therapeutic molecules against the TGFß1 pathway. Among many TGFß1 inhibitors, peptides (P17 and P144) were designed to block the TGFß1 pathway. However, their therapeutic applications have limited use, due to lack of selection for their targets and their possible recognition by the immune system and further due to their potential cytotoxicity on healthy cells. Besides that, P144 is a highly hydrophobic molecule with less dissolution even in organic solution. Here, we aimed to overcome the dissolution of P144, as well as design nano-delivery strategies to protect normal cells, to increase cellular penetration and to raise the targeted therapy of both P17 and P144. Peptides were encapsulated in moieties of polymer hybrid protein. Their assembly was investigated by TEM, microplate spectrum analysis and fluorescence microscopy. SMAD phosphorylation was analyzed by Western blot as a hallmark of their biological efficiency. The results showed that the encapsulation of P17 and P144 might improve their potential therapeutic applications.

17.
Cells ; 9(3)2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32204446

RESUMO

During chronic liver disease, hepatic progenitor cells (HPC, oval cells in rodents) become activated, proliferate, and differentiate into cholangiocytes and/or hepatocytes contributing to the final outcome of the regenerative process in a context-dependent fashion. Here, we analyze the crosstalk between the hepatocyte growth factor (HGF)/c-Met signaling axis, key for liver regeneration, and bone morphogenetic protein (BMP)9, a BMP family ligand that has emerged as a critical regulator of liver pathology. Our results show that HGF/c-Met signaling blocks BMP9-mediated apoptotic cell death, while it potentiates small mothers against decapentaplegic (SMAD)1 signaling triggered by BMP9 in oval cells. Interestingly, HGF-induced overactivation of SMAD1, -5, -8 requires the upregulation of TGF-ß type receptor activin receptor-like kinase (ALK)1, and both ALK1 and SMAD1 are required for the counteracting effect of HGF on BMP9 apoptotic activity. On the other hand, we also prove that BMP9 triggers the activation of p38MAPK in oval cells, which drives BMP9-apoptotic cell death. Therefore, our data support a model in which BMP9 and HGF/c-Met signaling axes establish a signaling crosstalk via ALK1 that modulates the balance between the two pathways with opposing activities, SMAD1 (pro-survival) and p38 mitogen-activated protein kinases (p38MAPK; pro-apoptotic), which determines oval cell fate. These data help delineate the complex signaling network established during chronic liver injury and its impact on the oval cell regenerative response.


Assuntos
Envelhecimento/metabolismo , Fator 2 de Diferenciação de Crescimento/metabolismo , Fator de Crescimento de Hepatócito/metabolismo , Fígado/citologia , Proteínas Proto-Oncogênicas c-met/metabolismo , Transdução de Sinais , Células-Tronco/citologia , Receptores de Activinas Tipo II/metabolismo , Animais , Apoptose , Linhagem Celular , Sobrevivência Celular , Ativação Enzimática , Humanos , Camundongos , Proteínas Smad/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
18.
Front Immunol ; 11: 614363, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33488625

RESUMO

Agonistic monoclonal antibodies (mAbs) targeting the co-stimulatory receptor 4-1BB are among the most effective immunotherapeutic agents across pre-clinical cancer models. However, clinical development of full-length 4-1BB agonistic mAbs, has been hampered by dose-limiting liver toxicity. We have previously developed an EGFR-targeted 4-1BB-agonistic trimerbody (1D8N/CEGa1) that induces potent anti-tumor immunity without systemic toxicity, in immunocompetent mice bearing murine colorectal carcinoma cells expressing human EGFR. Here, we study the impact of human EGFR expression on mouse liver in the toxicity profile of 1D8N/CEGa1. Systemic administration of IgG-based anti-4-1BB agonist resulted in nonspecific immune stimulation and hepatotoxicity in a liver-specific human EGFR-transgenic immunocompetent mouse, whereas in 1D8N/CEGa1-treated mice no such immune-related adverse effects were observed. Collectively, these data support the role of FcγR interactions in the major off-tumor toxicities associated with IgG-based 4-1BB agonists and further validate the safety profile of EGFR-targeted Fc-less 4-1BB-agonistic trimerbodies in systemic cancer immunotherapy protocols.


Assuntos
Ligante 4-1BB/agonistas , Anticorpos Monoclonais/efeitos adversos , Antineoplásicos Imunológicos/efeitos adversos , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Neoplasias Colorretais/tratamento farmacológico , Imunoterapia/métodos , Ligante 4-1BB/efeitos adversos , Ligante 4-1BB/toxicidade , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais/toxicidade , Antineoplásicos Imunológicos/uso terapêutico , Antineoplásicos Imunológicos/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/imunologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/metabolismo , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/prevenção & controle , Receptores ErbB/genética , Receptores ErbB/imunologia , Receptores ErbB/metabolismo , Feminino , Células HEK293 , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
19.
J Hepatol ; 72(1): 125-134, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31562907

RESUMO

BACKGROUND & AIMS: Upon ligand binding, tyrosine kinase receptors, such as epidermal growth factor receptor (EGFR), are recruited into clathrin-coated pits for internalization by endocytosis, which is relevant for signalling and/or receptor degradation. In liver cells, transforming growth factor-ß (TGF-ß) induces both pro- and anti-apoptotic signals; the latter are mediated by the EGFR pathway. Since EGFR mainly traffics via clathrin-coated vesicles, we aimed to analyse the potential role of clathrin in TGF-ß-induced signalling in liver cells and its relevance in liver cancer. METHODS: Real-Time PCR and immunohistochemistry were used to analyse clathrin heavy-chain expression in human (CLTC) and mice (Cltc) liver tumours. Transient knockdown (siRNA) or overexpression of CLTC were used to analyse its role on TGF-ß and EGFR signalling in vitro. Bioinformatic analysis was used to determine the effect of CLTC and TGFB1 expression on prognosis and overall survival in patients with hepatocellular carcinoma (HCC). RESULTS: Clathrin expression increased during liver tumorigenesis in humans and mice. CLTC knockdown cells responded to TGF-ß phosphorylating SMADs (canonical signalling) but showed impairment in the anti-apoptotic signals (EGFR transactivation). Experiments of loss or gain of function in HCC cells reveal an essential role for clathrin in inhibiting TGF-ß-induced apoptosis and upregulation of its pro-apoptotic target NOX4. Autocrine TGF-ß signalling in invasive HCC cells upregulates CLTC expression, switching its role to pro-tumorigenic. A positive correlation between TGFB1 and CLTC was found in HCC cells and patients. Patients expressing high levels of TGFB1 and CLTC had a worse prognosis and lower overall survival. CONCLUSIONS: This work describes a novel role for clathrin in liver tumorigenesis, favouring non-canonical pro-tumorigenic TGF-ß pathways. CLTC expression in human HCC samples could help select patients that would benefit from TGF-ß-targeted therapy. LAY SUMMARY: Clathrin heavy-chain expression increases during liver tumorigenesis in humans (CLTC) and mice (Cltc), altering the cellular response to TGF-ß in favour of anti-apoptotic/pro-tumorigenic signals. A positive correlation between TGFB1 and CLTC was found in HCC cells and patients. Patients expressing high levels of TGFB1 and CLTC had a worse prognosis and lower overall survival. CLTC expression in HCC human samples could help select patients that would benefit from therapies targeting TGF-ß.


Assuntos
Carcinogênese/genética , Cadeias Pesadas de Clatrina/genética , Cadeias Pesadas de Clatrina/metabolismo , Neoplasias Hepáticas/metabolismo , Transdução de Sinais/genética , Fator de Crescimento Transformador beta1/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Apoptose/genética , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Hepatócitos/metabolismo , Humanos , Estimativa de Kaplan-Meier , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Prognóstico , RNA Interferente Pequeno , Transfecção
20.
Cancers (Basel) ; 11(10)2019 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-31635301

RESUMO

Calcium is the most abundant element in the human body. Its role is essential in physiological and biochemical processes such as signal transduction from outside to inside the cell between the cells of an organ, as well as the release of neurotransmitters from neurons, muscle contraction, fertilization, bone building, and blood clotting. As a result, intra- and extracellular calcium levels are tightly regulated by the body. The liver is the most specialized organ of the body, as its functions, carried out by hepatocytes, are strongly governed by calcium ions. In this work, we analyze the role of calcium in human hepatoma (HCC) cell lines harboring a wild type form of the Epidermal Growth Factor Receptor (EGFR), particularly its role in proliferation and in EGFR downmodulation. Our results highlight that calcium is involved in the proliferative capability of HCC cells, as its subtraction is responsible for EGFR degradation by proteasome machinery and, as a consequence, for EGFR intracellular signaling downregulation. However, calcium-regulated EGFR signaling is cell line-dependent. In cells responding weakly to the epidermal growth factor (EGF), calcium seems to have an opposite effect on EGFR internalization/degradation mechanisms. These results suggest that besides EGFR, calcium could be a new therapeutic target in HCC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA